Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases

نویسندگان

  • Miguel Campo
  • JJ Espinoza
  • Julie Rieger
  • Abhinav Taliyan
چکیده

Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in ‘cold start’ situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in ‘cold start’ situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity (in the case of product-toproduct comparisons) and affinity (in the case of customer-toproduct comparisons). Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories spanning multiple years, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that don’t train on collaborative preferences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Predict Movie Ratings from the Netflix Dataset

In this paper, we describe a hybrid recommendation system combining the two main approaches to recommendation collaborative filtering and content-based classification. We build a collaborative filtering framework to construct a useritem matrix of ratings and produce recommendations based on user-user similarity computed using Pearson correlation. We tackle the sparsity of the user-item matrix b...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Movie Rating Based on users Comments

Movie recommendation system represents the user’s preference for the purpose of suggesting movie. In the proposed system sentiment analysis have been aggregated with a user-based collaborative filtering to provide the accurate recommendation to user. Movie recommendation system proving rating of the reviews on the basis of the reviews of the users, by using sentiment analysis and collaborative ...

متن کامل

An Improved Collaborative Movie Recommendation system using Computational Intelligence

Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their histo...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018